
Quick start on the ALCF Blue Gene/Q
and more

ATPESC	
July 31,	2016	

	
Ray	Loy	

Performance	Engineering	
Argonne	Leadership	CompuBng	Facility	

References

§  Sample	files	
–  On	Vesta,	Mira,	Cetus,	or	Cooley:	

•  /projects/ATPESC2016/examples/geOng-started	

§  Online	docs	
–  www.alcf.anl.gov/user-guides	

2

Cryptocard tips

§  The	displayed	value	is	a	hex	string.		Type	your	PIN	followed	by	
all	leWers	as	CAPITALS.	

§  If	you	fail	to	authenBcate	the	first	Bme,	you	may	have	typed	it	
incorrectly	
–  Try	again	with	the	same	crypto	string	(do	NOT	press	buWon	again)	

§  If	you	fail	again,	try	a	different	ALCF	host	with	a	fresh	crypto	#	
–  A	successful	login	resets	your	count	of	failed	logins	

§  Too	many	failed	logins	à	your	account	locked	
–  Symptom:	You	get	password	prompt	but	login	denied	even	if	it	is	correct	

§  Too	many	failed	logins	from	a	given	IP	à	the	IP	will	be	blocked	
–  Symptom:	connecBon	aWempt	by	ssh	or	web	browser	will	just	Bme	out	

3

Softenv

§  Similar	to	modules	package	
§  Keys	are	read	at	login	Bme	to	set	environment	variables	like	

PATH.	
–  Mira,	Cetus,	Vesta:		~/.soa	
–  Cooley:	~/.soa.cooley	

§  To	get	started:	
												#	This	key	selects	XL	compilers	to	be	used	by	mpi	wrappers	
												+mpiwrapper-xl	
												@default	
												#	the	end	–	do	not	put	any	keys	aaer	the	@default	
§  Aaer	edits	to	.soa,	type	"resoa"	or	log	out	and	back	in	again	

4

Using compiler wrappers

§  IBM XL cross-compilers:
–  SoftEnv key: +mpiwrapper-xl
–  Non-thread-safe: mpixlc, mpixlcxx, mpixlf77, mpixlf90, mpixlf95,

mpixlf2003, etc.
–  Thread-safe (add _r suffix): mpixlc_r, mpixlcxx_r, mpixlf77_r, etc.
–  Example:	mpixlc	–O3	–o	hellompi	hellompi.c

§  GNU cross-compilers:
–  SoftEnv key: +mpiwrapper-gcc
–  mpicc, mpicxx, mpif77, mpif90

§  CLANG cross-compilers:
–  SoftEnv key: +mpiwrapper-bgclang
–  mpiclang, mpiclang++, mpiclang++11

5

http://www.alcf.anl.gov/user-guides/software-and-libraries

BG/Q Job script

§  Sample:	
	
				#!/bin/bash	
				#COBALT	–n	32	–t	30	–q	training	–A	ATPESC2016	
				#	-p	is	mode	(how	many	ranks	per	node)	
				#	--np	is	number	of	ranks	
				runjob	–p	16	--np	32	--block	$COBALT_PARTNAME	:	hellompi	
				#	Note:		exit	status	of	this	script	is	runjob's	status	
	
§  Some	args	use	single	dash	and	some	double	dash	(man	runjob)	
§  Don't	forget	--block.			COBALT_PARTNAME	is	set	automaBcally	by	Cobalt.	
§  You	can	do	mulBple	runjobs	in	succession	

–  Use	normal	shell	redirecBon	to	separate	output	

§  Must	use	--envs	to	pass	environment	variables	into	your	program	
§  Output	to	<jobid>.{output,error,cobaltlog}	(use	–O	to	change	prefix)	

6

Cooley Job Script

§  More	like	a	typical	Linux	cluster	
§  Job	script	different	than	BG/Q.		

–  	Example	test.sh:	
								#!/bin/sh		
								NODES=`cat	$COBALT_NODEFILE	|	wc	-l`	
								PROCS=$((NODES	*	12))	
								mpirun	-f	$COBALT_NODEFILE	-n	$PROCS	myprog.exe	
–  Submit	on	5	nodes	for	10	minutes	

	qsub	-n	5	-t	10	-A	ATPESC2016	./test.sh	
–  Refer	to	online	user	guide	for	more	info	

7

Submitting your job

§  qsub	–A	<project>	-q	<queue>	-t	<Bme>	-n	<nodes>	--mode	script	./jobscript.sh	
									E.g.			
												qsub	–A	ATPESC2016	–q	training	–t	10	–n	32	–mode	script	./jobscript.sh	
									Note:	runs	on	Mira	should	use	"default"	queue	
	
§  If	you	specify	your	opBons	in	the	script	via	#COBALT,	then	just:	

–  qsub	jobscript.sh	
§  Make	sure	jobscript.sh	is	executable	
§  Without	"-q",	submits	to	the	queue	named	"default"	
§  Without	"-A",	uses	environment	variable	COBALT_PROJ	if	set	

–  export	COBALT_PROJ=ATPESC2016	
§  man	qsub	for	more	opBons	
	

8

Managing job

§  qstat	–	show	what's	in	the	queue	
–  qstat	–u	<username>																		#	Jobs	only	for	user	
–  qstat	<jobid>																																	#	Status	of	this	parBcular	job	
–  qstat	–fl	<jobid>																											#	Detailed	info	on	job	

§  qdel	<jobid>	

§  showres	–	show	reservaBons	currently	set	in	the	system	

§  man	qstat	for	more	opBons	

9

Interactive job

§  Useful	for	short	tests	or	debugging	
§  Submit	the	job	with	–I		(leWer	I	for	InteracBve)	

–  Default	queue	and	default	project	
•  qsub	–I	–n	32	–t	30	

–  For	the	workshop:	
•  qsub	–I	–n	32	–t	30	–q	training	–A	ATPESC2016	

§  Wait	for	job's	shell	prompt	
–  This	is	a	new	shell	with	seOngs	COBALT_PARTNAME,	COBALT_JOBID	
–  Exit	this	shell	to	end	your	job	

§  Run	"wait-boot"		ß	Important!	
§  From	job's	shell	prompt,	run	just	like	in	a	script	job:	

–  runjob	–block	$COBALT_PARTNAME	–p	16	–np	32	:	hellompi	
§  Aaer	job	expires,	runjob	will	fail.		Check	qstat	$COBALT_JOBID	

10

§  ALCF	resources	
–  Vesta		(2-rack	BG/Q)	

•  Queue	"training"	(maps	to	1K	nodes	24/7,	and	reserved	during	
evening	hands-on	sessions.		See	showres)	

•  Queue	"default"	to	access	the	rest	of	Vesta	
–  Cooley	–	x86	cluster	with	NVIDIA	GPUs	

•  Hands-on	reservaBon	queues	named	R.ATPESC_*	(see	showres)	
•  Queue	"default"	for	other	use	

–  Mira	(48-rack	BG/Q),	Cetus	(4-rack	BG/Q)	
•  Queue	"training"	(8K	nodes,	7-10PM	nightly).	
•  Queue	"default"	(for	large/long	jobs	ask	for	score	boost	ascovel@anl.gov)	
•  Test	your	Mira	setup	

–  Use	Cetus	(4-rack	BG/Q)	in	queue	"training"	(1K	nodes	24/7,	
reserved	during	evening	hands-on)	or	"default"	queue	

	

Access to computing resources

§  Vesta	is	the	main	BG/Q	resource	for	ATPESC	jobs	
–  run	your	jobs	on	Vesta	unless	larger	nodecounts/longer	wallBmes	are	necessary	
–  Queue	"training"	limit:	1hr	wallBme,		1	running	job,		5	queued	jobs	

§  In	"training"	queues,	jobs	have	priority	and/or	access	reserved	nodes.		In	"default"	
queues	you	will	be	compeBng	with	non-ATPESC	users	for	resources	

§  Mira	will	be	used	for	students	with		
–  a)	greater	ability	to	scale,	and	
–  b)	who	wish	to	run	larger/longer	jobs	during	scheduled	hands-on	sessions.			

§  Mira,	Cetus,	and	Cooley	share	the	same	filesystem	(different	from	Vesta)	
–  Avoid	using	Cetus	for	jobs	less	than	128	nodes	in	size	
–  Cetus	has	a	max	parBBon	size	of	2048.	

ALCF resources for ATPESC

Aside: NERSC and OLCF

§  NERSC	
–  Accounts	default	to	project	"ntrain"	
–  hWp://www.nersc.gov/users/computaBonal-systems/edison/running-jobs/	
–  hWp://www.nersc.gov/users/computaBonal-systems/cori/running-jobs/	

–  Use	regular	queues	

§  OLCF	
–  Use	queue	"TRN001"	
–  See	addiBonal	info	in	your	registraBon	packet.	

13

About node count and mode

§  Node	count	
–  Minimum	physical	parBBon	sizes	available	depend	on	machine	

•  Vesta:	32		Cetus:	128		Mira:	512	
•  Your	job	will	get	the	smallest	available	size	>=	what	you	ask	for	

–  It	is	reserved	for	you;	you	are	charged	for	enBre	parBBon	
§  Mode	

–  How	many	MPI	ranks	per	node	
•  Possible	values:	1,2,4,8,16,32,64	

–  A	node	has	16	cores,	each	can	run	4	threads	
•  For	modes	<	16,	an	MPI	rank	will	be	assigned	more	than	one	core	
•  Example:	"-p	4"	can	run	up	to		16	threads	per	MPI	rank	

	

14

Using OpenMP

§  Shared-memory parallelism is supported within a single node
–  Use MPI across compute nodes, OpenMP within a compute node

§  For XL compilers, thread-safe compiler version should be used
(mpixlc_r etc.) with any threaded application (either OMP or Pthreads)
–  OpenMP standard directives are supported (version 3.1)
–  Compile with –qsmp=omp,noauto (Note: debugging use noopt)
–  Increase default thread stack size using environment value

XLSMPOPTS=stack=NNN (value per thread, e.g. 10M)
§  Setting number of OpenMP threads

–  set using environment variable OMP_NUM_THREADS
–  must be exported to the compute nodes using runjob –envs

§  Example: 32 nodes / 512 ranks / 4 threads per rank:
 #!/bin/bash
 #COBALT –n 32 –t 30
 runjob –block $COBALT_PARTNAME –p 16 --np 512 --envs OMP_NUM_THREADS=4 : a.out	

15

Hands-on

§  QuesBons/problems	with	your	pre-class	assignment?	

16

